Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(11): 113344, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910500

ABSTRACT

Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.


Subject(s)
Finches , Motor Cortex , Animals , Finches/physiology , Motor Cortex/physiology , Brain/physiology , Learning/physiology , Motor Neurons , Vocalization, Animal/physiology
2.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425685

ABSTRACT

Cortical neurons that make direct connections to motor neurons in the brainstem and spinal cord are specialized for fine motor control and learning [1, 2]. Imitative vocal learning, the basis for human speech, requires the precise control of the larynx muscles [3]. While much knowledge on vocal learning systems has been gained from studying songbirds [4], an accessible laboratory model for mammalian vocal learning is highly desirable. Evidence indicative of complex vocal repertoires and dialects suggests that bats are vocal learners [5, 6], however the circuitry that underlies vocal control and learning in bats is largely unknown. A key feature of vocal learning animals is a direct cortical projection to the brainstem motor neurons that innervate the vocal organ [7]. A recent study [8] described a direct connection from the primary motor cortex to medullary nucleus ambiguus in the Egyptian fruit bat (Rousettus aegyptiacus). Here we show that a distantly related bat, Seba's short-tailed bat (Carollia perspicillata) also possesses a direct projection from the primary motor cortex to nucleus ambiguus. Our results, in combination with Wirthlin et al. [8], suggest that multiple bat lineages possess the anatomical substrate for cortical control of vocal output. We propose that bats would be an informative mammalian model for vocal learning studies to better understand the genetics and circuitry involved in human vocal communication.

3.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37292888

ABSTRACT

Maintaining motor skills is crucial for an animal's survival, enabling it to endure diverse perturbations throughout its lifespan, such as trauma, disease, and aging. What mechanisms orchestrate brain circuit reorganization and recovery to preserve the stability of behavior despite the continued presence of a disturbance? To investigate this question, we chronically silenced a fraction of inhibitory neurons in a brain circuit necessary for singing in zebra finches. Song in zebra finches is a complex, learned motor behavior and central to reproduction. This manipulation altered brain activity and severely perturbed song for around two months, after which time it was precisely restored. Electrophysiology recordings revealed abnormal offline dynamics, resulting from chronic inhibition loss, some aspects of which returned to normal as the song recovered. However, even after the song had fully recovered, the levels of neuronal firing in the premotor and motor areas did not return to a control-like state. Single-cell RNA sequencing revealed that chronic silencing of interneurons led to elevated levels of microglia and MHC I, which were also observed in normal juveniles during song learning. These experiments demonstrate that the adult brain can overcome extended periods of abnormal activity, and precisely restore a complex behavior, without recovering normal neuronal dynamics. These findings suggest that the successful functional recovery of a brain circuit after a perturbation can involve more than mere restoration to its initial configuration. Instead, the circuit seems to adapt and reorganize into a new state capable of producing the original behavior despite the persistence of some abnormal neuronal dynamics.

4.
Elife ; 122023 05 09.
Article in English | MEDLINE | ID: mdl-37158590

ABSTRACT

Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.


Subject(s)
Motor Cortex , Potassium Channels, Voltage-Gated , Songbirds , Animals , Action Potentials/physiology , Interneurons , Motor Neurons , Shaw Potassium Channels
5.
Horm Behav ; 151: 105340, 2023 05.
Article in English | MEDLINE | ID: mdl-36933440

ABSTRACT

Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.


Subject(s)
Passeriformes , Systems Biology , Humans , Animals , Endocrine System , Passeriformes/physiology , Hormones , Adaptation, Physiological
6.
Genome Biol ; 23(1): 204, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167554

ABSTRACT

BACKGROUND: Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS: Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS: Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.


Subject(s)
Genome , Vertebrates , Animals , Base Composition/genetics , Chromosomes , Genome/genetics , Sequence Analysis, DNA , Vertebrates/genetics
7.
Cell Rep ; 40(5): 111152, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926465

ABSTRACT

We present the transcriptomic changes underlying the development of an extreme neuroanatomical sex difference. The robust nucleus of the arcopallium (RA) is a key component of the songbird vocal motor system. In zebra finch, the RA is initially monomorphic and then atrophies in females but grows up to 7-fold larger in males. Mirroring this divergence, we show here that sex-differential gene expression in the RA expands from hundreds of predominantly sex chromosome Z genes in early development to thousands of predominantly autosomal genes by the time sexual dimorphism asymptotes. Male-specific developmental processes include cell and axonal growth, synapse assembly and activity, and energy metabolism; female-specific processes include cell polarity and differentiation, transcriptional repression, and steroid hormone and immune signaling. Transcription factor binding site analyses support female-biased activation of pro-apoptotic regulatory networks. The extensive and sex-specific transcriptomic reorganization of RA provides insights into potential drivers of sexually dimorphic neurodevelopment.


Subject(s)
Finches , Animals , Brain/metabolism , Female , Finches/genetics , Male , Sex Characteristics , Transcriptome/genetics , Vocalization, Animal/physiology
8.
Nat Commun ; 12(1): 6762, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799550

ABSTRACT

The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navß3 to Navß4. Dynamic clamping and dialysis of Navß4's C-terminal peptide into juvenile RA neurons provide evidence that Navß4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.


Subject(s)
High Vocal Center/physiology , Motor Activity/physiology , Motor Cortex/physiology , Motor Neurons/metabolism , Sodium/metabolism , Action Potentials/physiology , Animals , Finches , High Vocal Center/cytology , Male , Motor Cortex/cytology , Nerve Net/physiology , Patch-Clamp Techniques , Voltage-Gated Sodium Channel beta Subunits/metabolism
9.
Sci Adv ; 7(24)2021 Jun.
Article in English | MEDLINE | ID: mdl-34117069

ABSTRACT

Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here, we show that the ephrin-B3 protein in birds lacks several motifs present in other vertebrates, diminishing its affinity for the EphA4 receptor. The avian ephrin-B3 gene lacks an enhancer that drives midline expression and is missing in galliforms. The morphology and wiring at brachial levels of the chicken embryonic spinal cord resemble those of ephrin-B3 null mice. Dorsal midline decussation, evident in the mutant mouse, is apparent at the chick brachial level and is prevented by expression of exogenous ephrin-B3 at the roof plate. Our findings support a role for loss of ephrin-B3 function in shaping the avian brachial spinal cord circuitry and facilitating synchronous wing flapping.

10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903244

ABSTRACT

The low-density lipoprotein receptor (LDLR) is key to cellular cholesterol uptake and is also the main receptor for the vesicular stomatitis virus glycoprotein (VSV G). Here we show that in songbirds LDLR is highly divergent and lacks domains critical for ligand binding and cellular trafficking, inconsistent with universal structure conservation and function across vertebrates. Linked to the LDLR functional domain loss, zebra finches show inefficient infectivity by lentiviruses (LVs) pseudotyped with VSV G, which can be rescued by the expression of human LDLR. Finches also show an atypical plasma lipid distribution that relies largely on high-density lipoprotein (HDL). These findings provide insights into the genetics and evolution of viral infectivity and cholesterol transport mechanisms in vertebrates.


Subject(s)
Cholesterol/genetics , Lipids/blood , Membrane Glycoproteins/genetics , Receptors, LDL/genetics , Viral Envelope Proteins/genetics , Animals , Biological Transport/genetics , Cholesterol/metabolism , Finches/blood , Finches/genetics , Gene Expression Regulation/genetics , Humans , Ligands , Receptors, LDL/blood
11.
Sci Rep ; 10(1): 18767, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127988

ABSTRACT

How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.


Subject(s)
Finches/physiology , Motor Cortex/physiology , Animals , Behavior, Animal , Female , Gene Expression Profiling , In Situ Hybridization , Male , Vocalization, Animal
12.
J Comp Neurol ; 528(12): 2099-2131, 2020 08.
Article in English | MEDLINE | ID: mdl-32037563

ABSTRACT

An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.


Subject(s)
Atlases as Topic , Brain/anatomy & histology , Brain/physiology , Finches/anatomy & histology , Finches/physiology , Animals , Biological Evolution , Internet , Neuroanatomy , Transcriptome
13.
Neuron ; 104(1): 87-99, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31600518

ABSTRACT

Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.


Subject(s)
Auditory Perception , Formative Feedback , Learning , Vocalization, Animal , Alligators and Crocodiles , Animals , Behavior, Animal , Birds , Comprehension , Fishes , Imitative Behavior , Macaca , Phenotype , Phoca
14.
FASEB J ; 33(12): 13825-13836, 2019 12.
Article in English | MEDLINE | ID: mdl-31604057

ABSTRACT

The zebra finch has been used as a valuable vocal learning animal model for human spoken language. It is representative of vocal learning songbirds specifically, which comprise half of all bird species, and of Neoaves broadly, which comprise 95% of all bird species. Although transgenesis in the zebra finch has been accomplished, it is with a very low efficiency of germ-line transmission and far from the efficiency with a more genetically tractable but vocal nonlearning species, the chicken (a Galloanseriformes). To improve germ-line transmission in the zebra finch, we identified and characterized its primordial germ cells (PGCs) and compared them with chicken. We found striking differences between the 2 species, including that zebra finch PGCs were more numerous, more widely distributed in early embryos before colonization into the gonads, had slower timing of colonization, and had a different developmental gene-expression program. We improved conditions for isolating and culturing zebra finch PGCs in vitro and were able to transfect them with gene-expression vectors and incorporate them into the gonads of host embryos. Our findings demonstrate important differences in the PGCs of the zebra finch and advance the first stage of creating PGC-mediated germ-line transgenics of a vocal learning species.-Jung, K. M., Kim, Y. M., Keyte, A. L., Biegler, M. T., Rengaraj, D., Lee, H. J., Mello, C. V., Velho, T. A. F., Fedrigo, O., Haase, B., Jarvis, E. D., Han, J. Y. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch.


Subject(s)
Finches/physiology , Germ Cells/physiology , Learning/physiology , Animals , Disease Models, Animal , Embryo, Nonmammalian/physiology , Female , Gene Expression/physiology , Male
15.
BMC Genomics ; 20(1): 629, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375088

ABSTRACT

BACKGROUND: Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. RESULTS: We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). CONCLUSION: The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.


Subject(s)
Finches/genetics , Finches/physiology , Genomics , Learning , Neurons/cytology , Vocalization, Animal/physiology , Animals , Brain/cytology , Brain/metabolism , Brain/physiology , Ion Channels/genetics , Multigene Family/genetics , Synteny
16.
Neurobiol Learn Mem ; 161: 122-134, 2019 05.
Article in English | MEDLINE | ID: mdl-30965113

ABSTRACT

A clue to hippocampal function has been the discovery of place cells, leading to the 'spatial map' theory. Although the firing attributes of place cells are well documented, little is known about the organization of the spatial map. Unit recording studies, thus far, have reported a low coherence between neighboring cells and geometric space, leading to the prevalent view that the spatial map is not topographically organized. However, the number of simultaneously recorded units is severely limited, rendering construction of the spatial map nearly impossible. To visualize the functional organization of place cells, we used the activity-dependent immediate-early gene Zif268 in combination with behavioral, pharmacological and electrophysiological methods, in mice and rats exploring an environment. Here, we show that in animals confined to a small part of a maze, principal cells in the CA1/CA3 subfields of the dorsal hippocampus immunoreactive (IR) for Zif268 adhere to a 'cluster-type' organization. Unit recordings confirmed that the Zif268 IR clusters correspond to active place cells, while blockade of NMDAR (which alters place fields) disrupted the Zif268 IR clusters. Contrary to the prevalent view that the spatial map consists of a non-topographic neural network, our results provide evidence for a 'cluster-type' functional organization of hippocampal neurons encoding for space.


Subject(s)
CA1 Region, Hippocampal , CA3 Region, Hippocampal , Early Growth Response Protein 1/metabolism , Maze Learning/physiology , Nerve Net , Place Cells , Space Perception/physiology , Animals , Behavior, Animal/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/physiology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/metabolism , Nerve Net/physiology , Place Cells/cytology , Place Cells/metabolism , Place Cells/physiology , Rats , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
17.
J Exp Zool B Mol Dev Evol ; 332(3-4): 92-98, 2019 05.
Article in English | MEDLINE | ID: mdl-31004403

ABSTRACT

In vocal learning birds, memorization and song production rely on a set of telencephalic nuclei referred to as the song control system. Seasonal changes in song production are correlated with changes in the volume of the song control nuclei and are influenced by photoperiodic conditions and hormonal cues. The seasonal volume changes in the avian brain that controls singing are thought to involve regulation of neuronal replacement, which is a striking example of neuronal plasticity. The Rufous-bellied Thrush (Turdus rufiventris) is a seasonally breeding bird that actively sings during the spring and summer (breeding season) and is relatively silent in the fall, yet possible mechanisms behind the periodic changes in song production remain unknown. Here, we have examined two song control nuclei: High vocal center (HVC) and robust nucleus of arcopallium (RA) in fall males, spring males, and fall females of Rufous-bellied Thrush. The cytoarchitectonic organization was analyzed and quantified from Nissl-stained sections, and gene expression of song nuclei markers was examined by in situ hybridization during breeding and nonbreeding seasons. We observed a reduction in HVC volume and reductions in parvalbumin, and RGS4 expression in HVC and RA in males during the nonbreeding season. These findings provide evidence of seasonal changes in the song system of a representative tropical-breeding Turdidae species that does not maintain territories or mate bonding, setting the histological and molecular groundwork for future studies aimed at better understanding of song nuclei changes in seasonally breeding songbirds.


Subject(s)
Brain/anatomy & histology , Seasons , Songbirds/physiology , Vocalization, Animal/physiology , Animals , Brain/physiology
18.
J Comp Neurol ; 527(15): 2512-2556, 2019 10 15.
Article in English | MEDLINE | ID: mdl-30919954

ABSTRACT

The arcopallium, a key avian forebrain region, receives inputs from numerous brain areas and is a major source of descending sensory and motor projections. While there is evidence of arcopallial subdivisions, the internal organization or the arcopallium is not well understood. The arcopallium is also considered the avian homologue of mammalian deep cortical layers and/or amygdalar subdivisions, but one-to-one correspondences are controversial. Here we present a molecular characterization of the arcopallium in the zebra finch, a passerine songbird species and a major model organism for vocal learning studies. Based on in situ hybridization for arcopallial-expressed transcripts (AQP1, C1QL3, CBLN2, CNTN4, CYP19A1, ESR1/2, FEZF2, MGP, NECAB2, PCP4, PVALB, SCN3B, SCUBE1, ZBTB20, and others) in comparison with cytoarchitectonic features, we have defined 20 distinct regions that can be grouped into six major domains (anterior, posterior, dorsal, ventral, medial, and intermediate arcopallium, respectively; AA, AP, AD, AV, AM, and AI). The data also help to establish the arcopallium as primarily pallial, support a unique topography of the arcopallium in passerines, highlight similarities between the vocal robust nucleus of the arcopallium (RA) and AI, and provide insights into the similarities and differences of cortical and amygdalar regions between birds and mammals. We also propose the use of AMV (instead of nucleus taenia/TnA), AMD, AD, and AI as initial steps toward a universal arcopallial nomenclature. Besides clarifying the internal organization of the arcopallium, the data provide a coherent basis for further functional and comparative studies of this complex avian brain region.


Subject(s)
Finches/anatomy & histology , Neural Pathways/anatomy & histology , Prosencephalon/anatomy & histology , Animals
19.
Sci Rep ; 9(1): 816, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692609

ABSTRACT

Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to other brain regions via diffusion or transduction through other receptor systems. Urotensins have not previously been implicated in vocal control, but we find an annotation in Allen Human Brain Atlas of increased UTS2B expression within portions of human inferior frontal cortex implicated in human speech and singing. Thus UTS2B (URP) is a novel neural marker that may have conserved functions for vocal communication.


Subject(s)
Prosencephalon/metabolism , Songbirds/physiology , Urotensins/genetics , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Evolution, Molecular , Gene Expression Regulation, Developmental , Male , Sex Characteristics , Songbirds/genetics , Urotensins/metabolism , Vocalization, Animal
20.
Curr Biol ; 28(24): 4001-4008.e7, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30528582

ABSTRACT

Parrots are one of the most distinct and intriguing groups of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication [3] skills, and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the blue-fronted Amazon (Amazona aestiva) and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity; DNA damage repair; control of cell proliferation, cancer, and immunity; and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal-learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.


Subject(s)
Amazona/physiology , Biological Evolution , Cognition , Genome , Longevity/genetics , Amazona/genetics , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...